Chapitre 4

Manipulation de formules

4.1 Transformation de formules

Exercice 4.1 Soit la formule $C=2\pi R$

donnant la circonférence C d'un cercle de rayon R.

Résoudre la formule de la circonférence relativement à R, puis déterminer le rayon (en cm, arrondi au mm près) d'un cercle dont la circonférence mesure 20 cm.

Exercice 4.2 Soit la formule des intérêts simples $I = \frac{C \cdot t \cdot n}{100}$

où I représente les intérêts, C le capital placé, t le taux annuel (donné en %) et n est le nombre d'années du placement.

a) Résoudre la formule des intérêts simples relativement à C, puis calculer le capital à placer pendant 5 ans pour obtenir 1'200 francs d'intérêts à un taux de 3%:

b) Résoudre la formule des intérêts simples relativement à t, puis calculer le taux pour obtenir 1'500 francs d'intérêts en plaçant 10'000 francs pendant 4 ans :

c) Résoudre la formule des intérêts simples relativement à n, puis déterminer la durée de placement d'un capital de 8'000 francs si l'on obtient 1'200 francs d'intérêts en le plaçant à 2,5 % :

Exercice 4.3 Soit la formule $A = \frac{1}{2} \cdot b \cdot h$

donnant l'aire A d'un triangle en fonction de sa base b et de sa hauteur h.

a) Résoudre la formule de l'aire relativement à b, puis déterminer la longueur de la base d'un triangle d'aire $68~\rm cm^2$ et dont la hauteur mesure $8,5~\rm cm$:

b) Résoudre la formule de l'aire relativement à h, puis déterminer la hauteur d'un triangle d'aire $20~\rm cm^2$ et dont la base mesure $3.2~\rm cm$:

Exercice 4.4 Soit la formule de la loi d'Ohm $R = \frac{U}{I}$

où R est la résistance (en ohm $[\Omega]$), U la tension (en volt [V]) et I l'intensité d'un courant électrique (en ampère [A]).

a) Exprimer U en fonction de R et I :

b) Exprimer I en fonction de R et U:

Exercice 4.5 Soit la formule de la loi de gravitation de Newton $F = G \cdot \frac{m \cdot M}{d^2}$ où :

- F est la force de gravitation (en newton [N])
- G la constante gravitationnelle $(G \simeq 6,673 \cdot 10^{-11} \ [\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}])$
- m et M les masses (en kilogramme [kg]) des deux corps
- d la distance (en mètre [m]) entre les centres de gravité de ces corps.
- a) Exprimer m en fonction de F, G, M et d:

b) Exprimer d en fonction de F, G, m et M :

Exercice 4.6 Soit la formule $d=rac{1}{2}gt^2+v_0t$

donnant la distance d [m] parcourue par un corps en chute libre en fonction du temps t [s] et de sa vitesse initiale v_0 [m · s^{-1}].

g est l'accélération gravitationnelle sur Terre ($g \simeq 9,81 \ [\text{m} \cdot s^{-2}]$ à notre latitude, au niveau de la mer).

Exprimer v_0 en fonction de d, g et t:

Exercice 4.7

On rencontre en mécanique les formules suivantes :

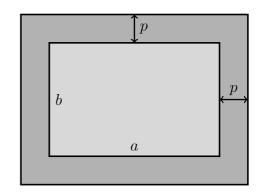
- $E_p = mgh$
 - où E_p est l'énergie potentielle (en joule [J]), m la masse [kg], g l'accélération gravitationnelle sur Terre ($g \simeq 9.81 \text{ [m} \cdot s^{-2}]$ à notre latitude, au niveau de la mer) et h l'altitude [m].
- $E_c = \frac{1}{2}mv^2$

où E_c est l'énergie cinétique (en joule [J]), m la masse [kg] et v la vitesse [m $\cdot s^{-1}$].

Si $E_p = E_c$, exprimer v en fonction de g et h:

4.2 Problèmes

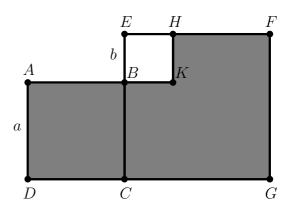
Exercice 4.8


Un maraîcher demande un prix p (donné en francs) par kilogramme de pommes livrées et un forfait f (donné en francs) pour la livraison. Posons T le prix (donné en francs) pour q kilogrammes de pommes livrées.

- a) Donner la formule permettant d'obtenir T en fonction de p, f et q.
- b) En utilisant la formule obtenue en a), exprimer f en fonction de T, p et q.
- c) En utilisant la formule obtenue en a), exprimer q en fonction de T, p et f.
- d) Sachant que le maraîcher facture 80 francs pour 20 kilogrammes de pommes livrées et 115 francs pour 30 kilogrammes de pommes livrées, déterminer p et f.

Exercice 4.9

Un terrain rectangulaire de longueur a et de largeur b est entièrement entouré par une bande de largeur p (les grandeurs sont données en mètres). Soit S l'aire de la bande.


- a) Donner la formule permettant d'obtenir S en fonction de a, b et p.
- b) En utilisant la formule obtenue en a), exprimer b en fonction de S, a et p.
- c) Déterminer les dimensions du terrain rectangulaire b sachant que la bande a une largeur de 3 m et mesure 216 m² et que la longueur mesure 6 m de plus que la largeur. a = 18 cm

Exercice 4.10

Dans la figure ci-contre, les quadrilatères ABCD, EFGC et EHKB sont des carrés. Soit a la longueur (en cm) du côté du carré ABCD et b la longueur (en cm) du côté du carré EHKB. Soit S l'aire totale de la surface grisée.

- a) Donner la formule permettant d'obtenir S en fonction de a et b.
- b) En utilisant la formule obtenue en a), exprimer b en fonction de S et a.
- c) Déterminer les longueurs a et b sachant que l'aire totale grisée est de 80 cm^2 et que le côté du carré EFCC mesure 8 cm. a = 5 cm

Solutions des exercices

4.1
$$R = \frac{C}{2\pi}$$
; $R \cong 3.2 \text{ cm}$

4.2

a)
$$C = \frac{100I}{tn}$$
; $C = 8'000 \text{ francs}$

b)
$$t = \frac{100I}{Cn}$$
 ; $t = 3.75\%$

c)
$$n = \frac{100I}{Ct}$$
; $n = 6 \text{ ans}$

4.3 a)
$$b = \frac{2A}{h}$$
; $b = 16 \text{ cm}$

b)
$$I = \frac{U}{A}$$

4.4 a)
$$U = RI \ [V]$$

b)
$$I = \frac{U}{R} [A]$$

4.5 a)
$$m = \frac{Fd^2}{MG}$$
 [kg]

b)
$$d = \sqrt{\frac{GmM}{F}} [m]$$

b) $h = \frac{2A}{b}$; h = 12.5 cm

4.6
$$v_0 = \frac{2d - gt^2}{2t} = \frac{d}{t} - \frac{1}{2}gt \text{ [m} \cdot \text{s}^{-1}\text{]}$$

4.7
$$v = \sqrt{2gh} \ [\text{m} \cdot \text{s}^{-1}]$$

4.8

a)
$$T = pq + f$$

c)
$$q = \frac{T - f}{p}$$

b)
$$f = T - pq$$

d)
$$p = 3.50 \text{ francs/kg}$$
 et $f = 10 \text{ francs}$

4.9

a)
$$S = 2ap + 2bp + 4p^2$$

b)
$$b = \frac{S - 2ap - 4p^2}{2n}$$

c)
$$a = 18 \text{ m et } b = 12 \text{ m}$$

4.10

a)
$$S = 2a^2 + 2ab$$

b)
$$b = \frac{S - 2a^2}{2a}$$

c)
$$a = 5$$
 cm et $b = 3$ cm