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Exercice 3

Pour les fonctions suivantes, on demande de déterminer
— l’ensemble de définition,
— le signe,

— les équations des asymptotes éventuelles et s’il existe un trou en donner les coor-
données,

— et le graphe.

2_ 4
W f@ = 757
b) f(ac):I3+4x2+$_6
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Exercice 4

D’une fonction rationnelle f, on donne son étude de signe (ci-dessous) et I’équation de ses
asymptotes : x =1 et y = 2

a) Vrai ou Faux?
1) ED(f)=R—-{4} Faux Uest yn 20 s ute v ED(X\: R-141)

Il v a un zéro de multiplicité paire. \lfé\ en x=-4 ca( le s\
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3) lim f(r) =1 Faux Snon \U)\i)&max\ une Al
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4) Le degré du numérateur et ce1u1 du denommateur sont égaux.\[ran  Caf g2 une Ak
' I N A'équah dlequaron 4=+
5) lim f(x) =co Nrai car | ya uwe R déqlxaa\\(:i Uﬂm%“l}

b) D’aprés I'étude de signe et les équations des asymptotes, déterminer les limites

suivantes.
1) lim f(z) = = 00 C?(‘_A\‘ 3) lim f(z) = O =¥tu\)
2) lim f(x) = + o 9 lim f@)=2  (car AW)

c¢) Esquisser le graphe d’une fonction f qui pourrait admettre cette étude de signe et
ces asymptotes.

d) Donner une fonction f qui pourrait admettre cette étude de signe et ces asymptotes.
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